ULK2 Ser 1027 Phosphorylation by PKA Regulates Its Nuclear Localization Occurring through Karyopherin Beta 2 Recognition of a PY-NLS Motif

نویسندگان

  • Sung Hwa Shin
  • Eun Jeoung Lee
  • Jaesun Chun
  • Sunghee Hyun
  • Sang Sun Kang
  • Beata G Vertessy
چکیده

Uncoordinated 51-like kinase 2 (ULK2), a member of the serine/threonine kinase family, plays an essential role in the regulation of autophagy in mammalian cells. Given the role of autophagy in normal cellular homeostasis and in multiple diseases, improved mechanistic insight into this process may result in the development of novel therapeutic approaches. Here, we present evidence that ULK2 associates with karyopherin beta 2 (Kapβ2) for its transportation into the nucleus. We identify a potential PY-NLS motif ((774)gpgfgssppGaeaapslRyvPY(795)) in the S/P space domain of ULK2, which is similar to the consensus PY-NLS motif (R/K/H)X(2-5)PY. Using a pull-down approach, we observe that ULK2 interacts physically with Kapβ2 both in vitro and in vivo. Confocal microscopy confirmed the co-localization of ULK2 and Kapβ2. Localization of ULK2 to the nuclear region was disrupted by mutations in the putative Kapβ2-binding motif (P794A). Furthermore, in transient transfection assays, the presence of the Kapβ2 binding site mutant (the cytoplasmic localization form) was associated with a substantial increase in autophagy activity (but a decrease in the in vitro serine-phosphorylation) compared with the wild type ULK2. Mutational analysis showed that the phosphorylation on the Ser1027 residue of ULK2 by Protein Kinase A (PKA) is the regulatory point for its functional dissociation from Atg13 and FIP 200, nuclear localization, and autophagy. Taken together, our observations indicate that Kapβ2 interacts with ULK2 through ULK2's putative PY-NLS motif, and facilitates transport from the cytoplasm to the nucleus, depending on its Ser1027 residue phosphorylation by PKA, thereby reducing autophagic activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modular Organization and Combinatorial Energetics of Proline–Tyrosine Nuclear Localization Signals

Proline-tyrosine nuclear localization signals (PY-NLSs) are recognized and transported into the nucleus by human Karyopherin (Kap) beta2/Transportin and yeast Kap104p. Multipartite PY-NLSs are highly diverse in sequence and structure, share a common C-terminal R/H/KX2-5PY motif, and can be subdivided into hydrophobic and basic subclasses based on loose N-terminal sequence motifs. PY-NLS variabi...

متن کامل

CTNNBL1 Is a Novel Nuclear Localization Sequence-binding Protein That Recognizes RNA-splicing Factors CDC5L and Prp31

Nuclear proteins typically contain short stretches of basic amino acids (nuclear localization sequences; NLSs) that bind karyopherin α family members, directing nuclear import. Here, we identify CTNNBL1 (catenin-β-like 1), an armadillo motif-containing nuclear protein that exhibits no detectable primary sequence homology to karyopherin α, as a novel, selective NLS-binding protein. CTNNBL1 (a si...

متن کامل

Evolutionary development of redundant nuclear localization signals in the mRNA export factor NXF1

In human cells, the mRNA export factor NXF1 resides in the nucleoplasm and at nuclear pore complexes. Karyopherin β2 or transportin recognizes a proline-tyrosine nuclear localization signal (PY-NLS) in the N-terminal tail of NXF1 and imports it into the nucleus. Here biochemical and cellular studies to understand the energetic organization of the NXF1 PY-NLS reveal unexpected redundancy in the ...

متن کامل

Regulation of Gli ciliary localization and Hedgehog signaling by the PY-NLS/karyopherin-β2 nuclear import system

Hedgehog (Hh) signaling in vertebrates depends on primary cilia. Upon stimulation, Hh pathway components, including Gli transcription factors, accumulate at primary cilia to transduce the Hh signal, but the mechanisms underlying their ciliary targeting remains largely unknown. Here, we show that the PY-type nuclear localization signal (PY-NLS)/karyopherinβ2 (Kapβ2) nuclear import system regulat...

متن کامل

Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins

The molecular dynamics of nuclear protein import were examined in a solution binding assay by testing for interactions between a protein containing a nuclear localization signal (NLS), the transport factors karyopherin alpha, karyopherin beta, and Ran, and FXFG or GLFG repeat regions of nucleoporins. We found that karyopherins alpha and beta cooperate to bind FXFG but not GLFG repeat regions. B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015